Métodos de solución
Resolver un sistema de ecuaciones lineales, es determinar el conjunto de números reales que satisfacen simultáneamente las ecuaciones. Este conjunto se denomina conjunto de solución del sistema.
1. Reducción (suma y resta)
Para resolver un sistema de ecuaciones 3 x 3 se pueden utilizar los mismos métodos utilizados en la resolución de sistemas 2 x 2. a continuación, se presenta el método por reducción.
a. Se seleccionan dos ecuaciones del sistema y se amplifican, de tal manera que se igualen los coeficientes de una de las incognitas para que al restar, esta variable sea eliminada y se obtenga una ecuación lineal con dos incógnitas.
b. Se repite el proceso anterior utilizando una de las ecuaciones del primer paso y la ecuación restante.
c. Se forma un sistema de 2 x 2 con las ecuaciones obtenidas en los dos pasos anteriores y se resuelve.
Ejemplo.
Resolver el sistema de ecuaciones lineales con tres variables.
3x-y+z=7 (ecuacion 1)
2x+y-2z=-5 (ecuacion 2)
4x+7y+5z=1 (ecuacion 3)
- De manera analoga a la solucion de sistemas de ecuaciones lineales con dos variables, se combinan las ecuaciones 1 y 2 para eliminar la variable y.
3x - y +z =7
+2x +y -2z =-5
5x -z = 2 (ecuacion 4)
- Se combinan las ecuaciones 1 y 3 para eliminar la variable y.
3x-y+z= 7(x7) se multiplica por 7 la ecuacion 1 para igualar los coeficientes de y.
4x+7y+5z= 1
21x-7y+7z=49
+4x +7y+5z=1
25x -12z=50 (ecuacion 5)
- Se aplica el metodo de reduccion con las ecuaciones 4 y 5 para cancelar la variable z o la variable x.
5x- z = 2 (x12)
25x+12z=50
60x-12z=24
25x+12z=50
85x =74
x= 74/85
- Se reemplaza el valor de x en 4 o 5 para hallar el valor de z.
5x-z=2
5(74/85)-z=2
74/17-z=2
z=40/17
Para encontrar el valor de y, se sustituyen los valores de x y z en cualquiera de las ecuaciones originales.
Luego, la solucion del sistema es: x=74/85 y=-(173/85) z=40/17
2. Regla de Sarrus
Un determinante formado por tres filas y tres columnas, se llama determinante de tercer orden de grado 3.
Para encontrar el valor del determinante de tercer orden, se aplica un metodo conocido como la regla de Sarrus.
En forma general, la regla de Sarrus se aplica asi:
(aei+dhc+gbf)-(ceg+fha+ibd)
Los sumandos positivos (los primeros tres de la formula) en el desarrollo de un determinante de tercer orden son el producto de los terminos de la diagonal principal y los productos de los terminos de cada paralela a ella por el elemento opuesto.
Los sumandos negativos (los tres ultimos terminos de la formula) son el producto de los términos de la diagonal secundaria y los productos de los terminos de cada paralela a ella por el elemento opuesto.
Ejemplos
Hallar el valor de la siguiente determinante
En la practica, para facilitar el calculo de los productos de los números en las diagolanes, en la parte inferior del determinante se copian las dos primeras filas, luego se trazan las diagonales y se realizan las operaciones en el sentido que muestran las flechas.
(-6+1+16) - (8-6+2) = 11-4 = 7
3. Regla de Cramer
Para resolver un sistema de tres ecuaciones con tres incognitas por el metodo de determinantes, se aplica la regla de Cramer, que se presenta a continuacion:
Dado el sistema 3 x 3
se cumple que:
Con D: determinante general, Dx: determinante de x, Dy: determinante de y y Dz: determinante de z
Si D=0, Dx=/0, Dy=/0, Dz=0/, el sistema no tiene solucion o tiene infinito número de soluciones.
Ejemplo
Aplicar la regla de Cramer para revolser el sistema.
= 24/12= 2
-(12/12)=-1
= 0/12=0
Luego, la solucion del sistema de ecuaciones lineales x=2, y=.1 y z=0.
Comprueba en tu cuaderno que efectivamente los valores de x,y,z son soluciones del sistema. para ello, sustituyelos en cada ecuacion y verifica que se cumple la igualdad.
No hay comentarios:
Publicar un comentario